Sabtu, 26 Desember 2009

MINYAK BUMI

MINYAK BUMI
1.Pembentukan Minyak Bumi, Gas Alam, dan Batu Bara Sumber energi yang banyak digunakan
untuk memasak, kendaraan bermotor danindustri berasal dari minyak bumi,gas alam dan batu bara. Ketiga jenis tersebut bahan bakar tersebut berasal dari pelapukan sisa-sisa organisme sehinggga disebut bahan bakar fosil. Minyak bumi dan gas alam berasal dari jasad renik lautan, tumbuhan dan hewan yang mati sekitar 150 juta tahun yang lampau.Sisa-sisa organisme itu mengendap di dasar lautan yang kemudian ditutupi oleh lumpur. Lapisan lumpur tersebut lambat laun berubah menjadi batuan karena pengaruh suhu dan tekanan lapisan di atasnya. Sementara itu,dengan meningkatnya tekanan dan suhu, bakteri anaerob menguraikan sisa-sisa jasad renik itu dan mengubahnya menjadi minyak dan gas. Proses pembentukan minyak dan gas ini memakan waktu jutaan tahun.Minyak dan gas yang terbentuk meresap dalam batuan yang berpori bagaikan air dalam batu karang .Minyak dan gas dapat pula bermigrasi dari suatu daerah ke daerah lain, kemudian terkonsentrasi jika terhalang oleh lapisan yang kedap. Walaupun minyak bumi dan gas alam terbentuk di dasar lautan, banyak sumber minyak dan gas yang terdapat di daratan. Hal ini terjadi karena pergerakan kulit bumi, seingga sebagian lautan menjadi daratan. Adapun batu bara yang dipercaya berasal dari pohon-pohon dan pakis yang hidup sekitar 3 juta tahun yang lalu, kemudian terkubur mungkin karena gempa bumi atau letusan gunung berapi. 2.Komposisi Gas Alam, Minyak Bumi, dan Batu Bara Gas alam terdiri dari alkana suhu rendah yaitu metana,etana,propana,dan butana dengan metana sebagai komponen utamanya. Selain itu alkana juga terdapat berbagai gas lain seperti karbon dioksida (CO2) dan hidrogen sulfida (H2S). Alkana adalah golongan senyawa yang kurang reaktif karena sukar bereaksi sehinggga disebut parafin yang artinya afinitas kecil. Reaksi penting dari alkana adalah pembakaran, substitusi, dan perengkahan (Cracking). Pembakaran sempurna menghasilkan CO2 dan H2O

Reaksi pembakaran propana C3H8 + 5O2 → 3CO2 + 4H2O Jika pembakaran tidak sempurna menghasilkan CO dan H2O,atau jelaga (partikel karbon ) Beberapa sumur gas juga mengfandung helium. Etana dalam gas alam biasanya dipisahkan untuk keperluan industri.Propana dan Butana juga dipisahkan kemudian dicairkan yang dikenal dengan LPG. Metana terutama digunakan sebagai bahan bakar,sumber hidrogen dan untuk pembuatan metanol. Minyak bumi adalah suatu capuran kompleks yang sebagian besar terdiri atas hidrokarbon.Hidrokarbon yang terkandung dalam minyak bumi terutama alkana, kemudian sikloalkana. Komponen lainnya adalah hidrokarbon aromatik, sedikit alkena dan berbagai senyawa karbon yang mengandung oksigen, nitrogen, dan belerang. Komposisi minyak bumi sngat bervariasi dari suatu sumur ke sumur lainnya dan dari suatu daerah ke daerah lain. 3.Pengelolaan Minyak Bumi Minyak bumi biasanya berada 3-4 km di bawah permukaan. Minyak bumi diperoleh dengan membuat sumur bor. Di Indonesia penambangan minyak terdapat di berbagai tempat, misalnya Aceh, Sumatera Utara , Kalimantan , dan Irian Jaya.Minyak mentah (crude oil ) berbentuk cairan kental hitam dan berbau kurang sedap. Minyak mentah belum dapat digunakan sebagai bahan bakar maupun untuk keperluan lainnya, tetapi harus diolah terlebih dahulu. Minyak mentah (cruide oil ) mengandung sekitar 500 jenis hidrokarbon dengan jumlah atom C-1 hinggga 50, karena titik didih karbon telah meningkat seiring bertambahnya jumlah atom C dalam molekulnya.Oleh karena itu pengolahan (pemurnian =refining ) minyak bumi dilakukan melalui distilasi bertingkat, dimana minyak mentah dipisahkan ke dalam kelompok-kelompok (fraksi) dengan titik didih yang mirip.Mula-mula minyak mentah pada suhu sekitar 400°C, kemudian dialirkan ke dalam menara fraksionasi. Komponen yang titik didihnya tinggi akan tetap berupa cairan dan turun ke bawah,sedangkan yang titik didihnya lebih rendah akan menguap dan naik ke bagian atas melalui sungkupsungkup yang disebut sungkup gelembung. Makin ke atas, suhu dalam menara fraksionasi itu semakin rendah. Sehingga setiap kali komponen dengan titik didih lebih tinggi akan mengembun dan terpisah, sedangkan komponen yang titik didihnya lebih rendah naik ke

bagian yang lebih atas lagi. Demikian selanjutnya sehingga komponen yang mencapai puncak menara adalah komponen yang pada suhu kamar berupa gas. Komponen yang berupa gas ini disebut gas petroleum, kemudian dicairkan dan disebut LPG (Liquified Petroleum Gas). 4. Bensin (Petrol atau Gasolin ) Bensin adalah satu jenis bahan bakar minyak yang dimaksudkan untuk jendaraan bermotor roda dua, tiga atau empat. Dewasa ini tersedi tiga jenis bensin, yaitu premium, pertamax, dan pertamax plus. Ketiganya mempunyai mutu atau prilaku (perfomance) yang berbeda. Mutu bahan bakar bensin dikaitkan dengan jumlah ketukan (knocking) yang ditimbulkannya dan dinyatakannya dengan nilai oktafnya. Ketukan adalah suatu prilaku yamg kuramg baik dari bahan bakar,yaitu pembakaran terjadi terlalu dini sebelum piston berada pada posisi yang tepat. Ketukan menyebabkan mesin mengelitik, mengurangi efisiensi bahan bakar dan dapat pula merusak mesin. Untuk menentukan nilai oktan, ditetapkan dua jenis senyawa sebagai pembanding yaitu “isooktana” dan n-haptana. Kedua senyawa ini adalah dua diantara macam banyak senyawa yang terdapat dalam bensin. Isooktana menghasilkan ketukan paling sedikit, diberi nilai oktan 100, sedangakan n-heptana menghasilkan ketukan paling banyak, diberi nilai oktan 0 (nol). Suatu campuran yang terdiri 80 %isooktana dan 20% n-heptana mempunyai nilai oktan sebesar (80/100 x 100) + (20/100 x 0) = 80. 5. Komposisi Minyak Bumi (The Trilogy) .

Parafin dan aspaltin adalah deposit organic yang dapat menyebabkan terjadinya penyumbatan pada formasi atau pada jaringan pengangkut. Keduanya serupa tapi tak sama. Parafin adalah senyawa hidrokarbon rantai lurus, N-alkana dengan rantai sangat panjang (C > 100) yang membentuk struktur kristal. Parafin memiliki titik didih lebih dari 240oF. Alpalten merupakan struktur benzen bermuatan, memiliki densitas yang tinggi, membentuk molekul amorf (biasanya padatan britle/getas). Parafin dapat meleleh sedangkan asphalten terdekomposisi, Deposit keduanya mengambang di air dan larut di air.

Parafin larut dalam heptane dan crude oil sedangkan aspalten tidak. Sebagian besar yang ditulisnya adalah benar, tapi ada beberapa hal yang mungkin perlu diluruskan. Jadi yang namanya minyak bumi atau sering juga disebut crude oil adalah merupakan campuran dari ratusan jenis hidrokarbon dari rentang yang paling kecil, seperti metan, yang memiliki satu atom karbon sampai dengan jenis hidrokarbon yang paling besar yang mengandung 200 atom karbon bahkan lebih. Secara garis besar minyak bumi dikelompokkan berdasarkan komposisi kimianya menjadi empat jenis, yaitu : 1. Parafin 2. Olefin 3. Naften 4. Aromat Tetapi karena di alam bisa dikatakan tidak pernah ditemukan minnyak bumi dalam bentuk olefin, maka minyak bumi kemudian dikelompokkan menjadi tiga jenis saja, yaitu Parafin, Naften dan Aromat. Kandungan utama dari campuran hidrokarbon ini adalah parafin atau senyawa isomernya. Isomer sendiri adalah bentuk lain dari suatu senyawa hidrokarbon yang memiliki rumus kimia yang sama. Misal pada normal-butana pada gambar berikut memiliki isomer 2metil propana, atau kadang disebut juga iso-butana. Keduanya memiliki rumus kimia yang sama, yaitu C4H10 tetapi memiliki rumus bangun yang berbeda seperti tampak pada gambar. Jika atom karon (C) dinotasikan sebagai bola berwarna hitam dan atom hidrogen (H) dinotasikan sebagai bola berwarna merah. Senyawa hidrokarbon ‘normal’ sering juga disebut sebagai senyawa hidrokarbon rantai lurus, sedangkan senyawa isomernya atau ‘iso’ sering juga disebut sebagai senyawa hidrokarbon rantai cabang. Keduanya merupakan jenis minyak bumi jenis parafin. Sedangkan sisa kandungan hidrokarbon lainnya dalam minyak bumi adalah senyawa sikloparafin yang disebut juga naften dan/atau senyawa aromat. Berikut adalah contoh dari sikloparafin dan aromat ‘Keluarga hidrokarbon’ terebut diatas disebut homologis, karena sebagian besar

kandungan yang ada dalam minyak bumi tersebut dapat dipisahkan kedalam beberapa jenis kemurnian untuk keperluan komersial. Secara umum, di dalam kilang minyak bumi, pemisahan perbandingan kemurnian dilakukan terhadap hidrokarbon yang memiliki kandungan karbon yang lebih kecil dari C7. Pada umumnya kandungan tersebut dapat dipisahkan dan diidentifikasi, tetapi hanya untuk keperluan di laboratorium. Campuran siklo parafin dan aromat dalam rantai hidrokarbon panjang dalam minyak bumi membuat minyak bumi tersebut digolongkan menjadi minyak bumi jenis aspaltin. Minyak bumi di alam tidak pernah terdapat dalam bentuk parafin murni maupun aspaltin murni, tetapi selalu dalam bentuk campuran antara parafin dan aspaltin. Pengelompokan minyak bumi menjadi minyak bumi jenis parafin dan minyak bumi jenis aspaltin berdasarkan banyak atau dominasi minyak parafin atau aspaltin dalam minyak bumi. Artinya minyak bumi dikatakan jenis parafin jika senyawa parafinnya lebih dominan dibandingkan aromat dan/atau siklo parafinnya. Begitu juga sebaliknya. Dalam skala industri, produk dari minyak bumi dikelompokkan berdasarkan rentang titik didihnya, atau berdasarkan trayek titik didihnya. Pengelompokan produk berdasarkan titik didih ini lebih sering dilakukan dibandingkan pengelompokan berdasarkan komposisinya.. Minyak bumi tidak seluruhnya terdiri dari hidrokarbon murni. Dalam minyak bumi terdapat juga zat pengotor (impurities) berupa sulfur (belerang), nitrogen dan logam. Pada umumnya zat pengotor yang banyak terdapat dalam minyak bumi adalah senyawa sulfur organik yang disebut merkaptan. Merkaptan ini mirip dengan hidrokarbon pada umumnya, tetapi ada penambahan satu atau lebih atom sulfur dalam molekulnya. Senyawa sulfur yang lebih kompleks dalam minyak bumi terdapat dalam bentuk tiofen dan disulfida. Tiofen dan disulfida ini banyak terdapat dalam rantai hidrokarbon panjang atau pada produk distilat pertengahan (middle distillate). Selain itu zat pengotor lainnya yang terdapat dalam minyak bumi adalah berupa senyawa halogen organik, terutama klorida, dan logam organik, yaitu natrium (Na), Vanadium (V) dan nikel (Ni). Titik didih minyak bumi parafin dan aspaltin tidak dapat ditentukan secara pasti, karena sangat bervariasi, tergantung bagaimana komposisi jumlah dari rantai hidrokarbonnya. Jika minyak bumi tersebut banyak mengandung hidrokarbon rantai pendek dimana memiliki jumlah atom karbon lebih sedikit maka titik didihnya lebih rendah, sedangkan jika memiliki

hidrokarbon rantai panjang dimana memiliki jumlah atom karbon lebih banyak maka titik didihnya lebih tinggi. 6. Proses Pembentukan Minyak Bumi Membahas identifikasi minyak bumi tidak dapat lepas dari bahasan teori pembentukan minyak bumi dan kondisi pembentukannya yang membuat suatu minyak bumi menjadi spesifik dan tidak sama antara suatu minyak bumi dengan minyak bumi lainnya. Ada banyak hipotesa tentang terbentuknya minyak bumi yang dikemukakan oleh para ahli, beberapa diantaranya adalah : 1.Teori Biogenesis ( organik ) Macqiur (Perancis, 1758) merupakan orang yang pertama kali mengemukakan pendapat bahwa minyak bumi berasal dari tumbuh-tumbuhan. Kemudian M.W. Lamanosow (Rusia, 1763) juga mengemukakan hal yang sama. Pendapat di atas juga didukung oleh sarjana lainnya seperti, New Beery (1859), Engler (1909), Bruk (1936), Bearl (1938) dan Hofer. Mereka menyatakan bahwa: “minyak dan gas bumi berasal dari organisme laut yang telah mati berjuta-juta tahun yang lalu dan membentuk sebuah lapisan dalam perut bumi.” 2.Teori Abiogenesis ( Anorganik ) Barthelot (1866) mengemukakan bahwa di dalam minyak bumi terdapat logam alkali, yang dalam keadaan bebas dengan temperatur tinggi akan bersentuhan dengan CO2 membentuk asitilena. Kemudian Mandeleyev (1877) mengemukakan bahwa minyak bumi terbentuk akibat adanya pengaruh kerja uap pada karbida-karbida logam dalam bumi. Yang lebih ekstrim lagi adalah pernyataan beberapa ahli yang mengemukakan bahwa minyak bumi mulai terbentuk sejak zaman prasejarah, jauh sebelum bumi terbentuk dan bersamaan dengan proses terbentuknya bumi. Pernyataan tersebut berdasarkan fakta ditemukannya material hidrokarbon dalam beberapa batuan meteor dan di atmosfir beberapa planet lain 2). Dari sekian banyak hipotesa tersebut yang sering dikemukakan adalah Teori Biogenesis, karena lebih bisa. Teori pembentukan minyak bumi terus berkembang seiring dengan berkembangnya teknologi dan teknik analisis minyak bumi, sampai kemudian pada tahun 1984 G. D. Hobson dalam tulisannya yang berjudul The Occurrence and Origin of Oil

and Gas menyatakan bahwa : “The type of oil is dependent on the position in the depositional basin, and that the oils become lighter in going basinward in any horizon. It certainly seems likely that the depositional environment would determine the type of oil formed and could exert an influence on the character of the oil for a long time, even thought there is evolution” Berdasarkan teori Biogenesis, minyak bumi terbentuk karena adanya kebocoran kecil yang permanen dalam siklus karbon. Siklus karbon ini terjadi antara atmosfir dengan permukaan bumi, yang digambarkan dengan dua panah dengan arah yang berlawanan, dimana karbon diangkut dalam bentuk karbon dioksida (CO2). Pada arah pertama, karbon dioksida di atmosfir berasimilasi, artinya CO2 diekstrak dari atmosfir oleh organisme fotosintetik darat dan laut. Pada arah yang kedua CO2 dibebaskan kembali ke atmosfir melalui respirasi makhluk hidup (tumbuhan, hewan dan mikroorganisme).Dalam proses ini, terjadi kebocoran kecil yang memungkinkan satu bagian kecil karbon yang tidak dibebaskan kembali ke atmosfir dalam bentuk CO2, tetapi mengalami transformasi yang akhir-nya menjadi fosil yang dapat terbakar. Bahan bakar fosil ini jumlahnya hanya kecil sekali. Bahan organik yang mengalami oksidasi selama pemendaman. Akibatnya, bagian utama dari karbon organik dalam bentuk karbonat menjadi sangat kecil jumlahnya dalam batuan sedimen. Pada mulanya senyawa tersebut (seperti karbohidrat, protein dan lemak) diproduksi oleh makhluk hidup sesuai dengan kebutuhannya, seperti untuk mempertahankan diri, untuk berkembang biak atau sebagai komponen fisik dan makhluk hidup itu. Komponen yang dimaksud dapat berupa konstituen sel, membran, pigmen, lemak, gula atau protein dari tumbuh-tumbuhan, cendawan, jamur, protozoa, bakteri, invertebrata ataupun binatang berdarah dingin dan panas, sehingga dapat ditemukan di udara, pada permukaan, dalam air atau dalam tanah. Apabila makhluk hidup tersebut mati, maka 99,9 % senyawa karbon dan makhluk hidup akan kembali mengalami siklus sebagal rantai makanan, sedangkan sisanya 0,1 % senyawa karbon terjebak dalam tanah dan dalam sedimen. Inilah yang merupakan cikal bakal senyawa-senyawa fosil atau dikenal juga sebagai embrio minyak bumi. Embrio ini mengalami perpindahan dan akan menumpuk di salah satu tempat yang kemungkinan menjadi reservoar dan ada yang hanyut bersama aliran air sehingga menumpuk di bawah dasar laut, dan ada juga karena perbedaan tekanan di bawah laut muncul ke permukaan lalu

menumpuk di permukaan dan ada pula yang terendapkan di permukaan laut dalam yang arusnya kecil. Embrio kecil ini menumpuk dalam kondisi lingkungan lembab, gelap dan berbau tidak sedap di antara mineral-mineral dan sedimen, lalu membentuk molekul besar yang dikenal dengan geopolimer. Senyawa-senyawa organik yang terpendam ini akan tetap dengan karakter masing-masing yang spesifik sesuai dengan bahan dan lingkungan pembentukannya. Selanjutnya senyawa organik ini akan mengalami proses geologi dalam perut bumi. Pertama akan mengalami proses diagenesis, dimana senyawa organik dan makhluk hidup sudah merupakan senyawa mati dan terkubur sampai 600 meter saja di bawah permukaan dan lingkungan bersuhu di bawah 50°C. Pada kondisi ini senyawa-senyawa organik yang berasal dan makhluk hidup mulai kehilangan gugus beroksigen akibat reaksi dekarboksilasi dan dehidratasi. Semakin dalam pemendaman terjadi, semakin panas lingkungannya, penam-bahan kedalaman 30 - 40 m akan menaik-kan temperatur 1°C. Di kedalaman lebih dan 600 m sampai 3000 m, suhu pemendaman akan berkisar antara 50 - 150 °C, proses geologi kedua yang disebut katagenesis akan berlangsung, maka geopolimer yang terpendam mulal terurai akibat panas bumi. Komponen-komponen minyak bumi pada proses ini mulai terbentuk dan senyawa– senyawa karakteristik yang berasal dan makhluk hidup tertentu kembali dibebaskan dari molekul. Bila kedalaman terus berlanjut ke arah pusat bumi, temperatur semakin naik, dan jika kedalaman melebihi 3000 m dan suhu di atas 150°C, maka bahan-bahan organik dapat terurai menjadi gas bermolekul kecil, dan proses ini disebut metagenesis. Setelah proses geologi ini dilewati, minyak bumi sudah terbentuk bersama-sama dengan bio-marka. Fosil molekul yang sudah terbentuk ini akan mengalami perpindahan (migrasi) karena kondisi lingkungan atau kerak bumi yang selalu bergerak rata-rata se-jauh 5 cm per tahun, sehingga akan ter-perangkap pada suatu batuan berpori, atau selanjutnya akan bermigrasi membentuk suatu sumur minyak. Apabila dicuplik batuan yang memenjara minyak ini (batuan induk) atau minyak yang terperangkap dalam rongga bu-mi, akan ditemukan fosil senyawa-senyawa organik. Fosil-fosil senyawa inilah yang diten-tukan strukturnya menggunaan be-berapa metoda analisis, sehingga dapat menerangkan asal-usul fosil, bahan pembentuk, migrasi minyak bumi serta hubungan antara suatu minyak bumi dengan minyak bumi lain dan hubungan minyak bumi dengan batuan induk.

Kamis, 11 Juni 2009

PROSES PENAMBANGAN BATU BARA

MINERALOGI

Mineralogi merupakan ilmu bumi yang berfokus pada sifat kimia, struktur kristal, dan fisika (termasuk optik) dari mineral. Studi ini juga mencakup proses pembentukan dan perubahan mineral.


Pada awalnya, mineralogi lebih menitikberatkan pada sistem klasifikasi mineral pembentuk batuan. International Mineralogical Association merupakan suatu organisasi yang beranggotakan organisasi-organisasi yang mewakili para ahli mineralogi dari masing-masing negara. Aktifitasnya mencakup mengelolaan penamaan mineral (melalui Komisi Mineral Baru dan Nama Mineral), lokasi mineral yang telah diketahui, dsb. Sampai dengan 2004 telah terdapat lebih dari 4000 spesies mineral yang diakui oleh IMA. Dari kesemua itu, 150 dapat digolongkan “umum”, 50 lainnya “terkadang”, dan sisanya “jarang” sampai “sangat jarang”

Belakangan ini, dangan disebabkan oleh perkembangan teknik eksperimental (seperti defraksi neutron) dan kemampuan komputasi yang ada, telah memungkinkan simulasi prilaku kristal berskala atom dengan sangat akurat, ilmu ini telah berkembang luas hingga mencakup permasalahan yang lebih umum dalam bidang kimia anorganik dan fisika padat. Meskipun demikan, bidang ini tetap berfokus pada struktur kristal yang umumnya dijumpai pada mineral pembentuk batuan (seperti pada perovskites, mineral lempung dan kerangka silikat). Secara khusus, bidang ini telah mencapai kemajuan mengenai hubungan struktur mineral dan kegunaannya; di alam, contoh yang menonjol berupa akurasi perhitungan dan perkiraan sifat elastic mineral, yang telah membuka pengetahuan yang mendalam mengenai prilaku seismik batuan dan ketidakselarasan yang berhubungan dengan kedalaman pada seismiogram dari mantel bumi. Sehingga, dalam kaitannya dengan hubungan antara fenomena berskala atom dan sifat-sifat makro, ilmu mineral (seperti yang umumnya diketahui saat ini) kemungkinan lebih berhubungan dengan ilmu material daripada ilmu lainnya.

Batuan

Dunia Batuan dan Mineral



Batuan tersusun atas bahan yang disebut mineral, yang merupakan senyawa kimia padat yang terbentuk secara alami. Jadi mineral adalah bahan pembentuk batuan. Batuan dapat tersusun oleh satu mineral atau campuran beberapa macam mineral.


Batuan dibedakan menjadi 3 macam yaitu : 
Batuan beku disusun oleh mineral hasil pembekuan magma.

Batuan endapan / sedimen sebagai hasil pengendapan rombakan batuan yang diangkut oleh air (sungai) dan terendapkan pada suatu cekungan seperti laut, danau, sungai atau rawa.

Batuan malihan berasal dari batuan bekuan dan batuan endapan yang termalihkan susunan mineralnya atau batuan malihan yang termalihkan ulang. Pemalihan susunan mineral disebabkan karena peningkatan suhu dan tekanan.

 


 


 

Rabu, 27 Mei 2009

Kristal adalah suatu padatan yang atom, molekul, atau ion penyusunnya terkemas secara teratur dan polanya berulang melebar secara tiga dimensi.

Secara umum, zat cair membentuk kristal ketika mengalami proses pemadatan. Pada kondisi ideal, hasilnya bisa berupa kristal tunggal, yang semua atom-atom dalam padatannya "terpasang" pada kisi atau struktur kristal yang sama, tapi, secara umum, kebanyakan kristal terbentuk secara simultan sehingga menghasilkan padatan polikristalin. Misalnya, kebanyakan logam yang kita temui sehari-hari merupakan polikristal.

Struktur kristal mana yang akan terbentuk dari suatu cairan tergantung pada kimia cairannya sendiri, kondisi ketika terjadi pemadatan, dan tekanan ambien. Proses terbentuknya struktur kristalin dikenal sebagai kristalisasi.

Kristal bismut.

Meski proses pendinginan sering menghasilkan bahan kristalin, dalam keadaan tertentu cairannya bisa membeku dalam bentuk non-kristalin. Dalam banyak kasus, ini terjadi karena pendinginan yang terlalu cepat sehingga atom-atomnya tidak dapat mencapai lokasi kisinya. Suatu bahan non-kristalin biasa disebut bahan amorf atau seperti gelas. Terkadang bahan seperti ini juga disebut sebagai padatan amorf, meskipun ada perbedaan jelas antara padatan dan gelas. Proses pembentukan gelas tidak melepaskan kalor lebur jenis (Bahasa Inggris: latent heat of fusion). Karena alasan ini banyak ilmuwan yang menganggap bahan gelas sebagai cairan, bukan padatan. Topik ini kontroversial, silakan lihat gelas untuk pembahasan lebih lanjut.

Kristal insulin.

Struktur kristal terjadi pada semua kelas material, dengan semua jenis ikatan kimia. Hampir semua ikatan logam ada pada keadaan polikristalin; logam amorf atau kristal tunggal harus diproduksi secara sintetis, dengan kesulitan besar. Kristal ikatan ion dapat terbentuk saat pemadatan garam, baik dari lelehan cairan maupun kondensasi larutan. Kristal ikatan kovalen juga sangat umum. Contohnya adalah intan, silika dan grafit. Material polimer umumnya akan membentuk bagian-bagian kristalin, namun panjang molekul-molekulnya biasanya mencegah pengkristalan menyeluruh. Gaya Van der Waals lemah juga dapat berperan dalam struktur kristal. Contohnya, jenis ikatan inilah yang menyatukan lapisan-lapisan berpola heksagonal pada grafit.

Kebanyakan material kristalin memiliki berbagai jenis cacat kristalografis. Jenis dan struktur cacat-cacat tersebut dapat berefek besar pada sifat-sifat material tersebut.

Galium, logam yang dengan mudah membentuk kristal tunggal berukuran besar

Meskipun istilah "kristal" memiliki makna yang sudah ditentukan dalam ilmu material dan fisika zat padat, dalam kehidupan sehari-hari "kristal" merujuk pada benda padat yang menunjukkan bentuk geometri tertentu, dan kerap kali sedap di mata. Berbagai bentuk kristal tersebut dapat ditemukan di alam. Bentuk-bentuk kristal ini bergantung pada jenis ikatan molekuler antara atom-atom untuk menentukan strukturnya, dan juga keadaan terciptanya kristal tersebut. Bunga salju, intan, dan garam dapur adalah contoh-contoh kristal.

Beberapa material kristalin mungkin menunjukkan sifat-sifat elektrik khas, seperti efek feroelektrik atau efek piezoelektrik.

Kelakuan cahaya dalam kristal dijelaskan dalam optika kristal. Dalam struktur dielektrik periodik serangkaian sifat-sifat optis unik dapat ditemukan seperti yang dijelaskan dalam kristal fotonik.

Kristalografi adalah studi ilmiah kristal dan pembentukannya.

KRISTAL


Kristal adalah suatu padatan yang atom, molekul, atau ion penyusunnya terkemas secara teratur dan polanya berulang melebar secara tiga dimensi.

Secara umum, zat cair membentuk kristal ketika mengalami proses pemadatan. Pada kondisi ideal, hasilnya bisa berupa kristal tunggal, yang semua atom-atom dalam padatannya "terpasang" pada kisi atau struktur kristal yang sama, tapi, secara umum, kebanyakan kristal terbentuk secara simultan sehingga menghasilkan padatan polikristalin. Misalnya, kebanyakan logam yang kita temui sehari-hari merupakan polikristal.

Struktur kristal mana yang akan terbentuk dari suatu cairan tergantung pada kimia cairannya sendiri, kondisi ketika terjadi pemadatan, dan tekanan ambien. Proses terbentuknya struktur kristalin dikenal sebagai kristalisasi.

Kristal bismut.

Meski proses pendinginan sering menghasilkan bahan kristalin, dalam keadaan tertentu cairannya bisa membeku dalam bentuk non-kristalin. Dalam banyak kasus, ini terjadi karena pendinginan yang terlalu cepat sehingga atom-atomnya tidak dapat mencapai lokasi kisinya. Suatu bahan non-kristalin biasa disebut bahan amorf atau seperti gelas. Terkadang bahan seperti ini juga disebut sebagai padatan amorf, meskipun ada perbedaan jelas antara padatan dan gelas. Proses pembentukan gelas tidak melepaskan kalor lebur jenis (Bahasa Inggris: latent heat of fusion). Karena alasan ini banyak ilmuwan yang menganggap bahan gelas sebagai cairan, bukan padatan. Topik ini kontroversial, silakan lihat gelas untuk pembahasan lebih lanjut.

Kristal insulin.

Struktur kristal terjadi pada semua kelas material, dengan semua jenis ikatan kimia. Hampir semua ikatan logam ada pada keadaan polikristalin; logam amorf atau kristal tunggal harus diproduksi secara sintetis, dengan kesulitan besar. Kristal ikatan ion dapat terbentuk saat pemadatan garam, baik dari lelehan cairan maupun kondensasi larutan. Kristal ikatan kovalen juga sangat umum. Contohnya adalah intan, silika dan grafit. Material polimer umumnya akan membentuk bagian-bagian kristalin, namun panjang molekul-molekulnya biasanya mencegah pengkristalan menyeluruh. Gaya Van der Waals lemah juga dapat berperan dalam struktur kristal. Contohnya, jenis ikatan inilah yang menyatukan lapisan-lapisan berpola heksagonal pada grafit.

Kebanyakan material kristalin memiliki berbagai jenis cacat kristalografis. Jenis dan struktur cacat-cacat tersebut dapat berefek besar pada sifat-sifat material tersebut.

Galium, logam yang dengan mudah membentuk kristal tunggal berukuran besar

Meskipun istilah "kristal" memiliki makna yang sudah ditentukan dalam ilmu material dan fisika zat padat, dalam kehidupan sehari-hari "kristal" merujuk pada benda padat yang menunjukkan bentuk geometri tertentu, dan kerap kali sedap di mata. Berbagai bentuk kristal tersebut dapat ditemukan di alam. Bentuk-bentuk kristal ini bergantung pada jenis ikatan molekuler antara atom-atom untuk menentukan strukturnya, dan juga keadaan terciptanya kristal tersebut. Bunga salju, intan, dan garam dapur adalah contoh-contoh kristal.

Beberapa material kristalin mungkin menunjukkan sifat-sifat elektrik khas, seperti efek feroelektrik atau efek piezoelektrik.

Kelakuan cahaya dalam kristal dijelaskan dalam optika kristal. Dalam struktur dielektrik periodik serangkaian sifat-sifat optis unik dapat ditemukan seperti yang dijelaskan dalam kristal fotonik.

Kristalografi adalah studi ilmiah kristal dan pembentukannya.

Selasa, 26 Mei 2009

Contoh Reklamasi Pertambangan


Pelaksanaan reklamasi bekas penambangan ini diantaranya Undang-Undang mengenai Kehutanan No. 41 tahun 1999 dinyatakan bahwa kegiatan penambangan terbuka dilarang pada kawasan hutan lindung (pasal 38 ayat 4).

Setelah dilakukan penambangan, kegiatan reklamasi hutan merupakan upaya rehabilitasi hutan dan lahan. Tujuannya antara lain untuk memulihkan, memperbaiki dan meningkatkan kemampuan dan fungsi hutan agar kembali, baik sebagai faktor produksi maupun sebagai penyangga kehidupan. Dalam pelaksanaan reklamasi sebagaimana kegiatan yang lain dalam mendukung program ini lebih ditekankan pada peningkatan partisipasi aktif dan pengembangan kelembagaan masyarakat sekitar. Terkait dengan kualitas lingkungan DAS maka pengendalian erosi dan sedimentasi serta tata air segera dapat diupayakan bersama dengan itu kesejahteraan masyarakat dapat ditingkatkan.

Dalam dunia pertambangan ada beberapa istilah yang saling berhubungan. Restorasi adalah penggantian sebagian tanah atau seluruhnya baik berupa topsoil, subsoil maupun bahan-bahan pembentuk tanah. After care adalah semua operasi pelaksanaan penanaman, pengolahan lahan, pemupukan, penyiraman, pembuatan saluran dengan membangun tanaman pertanian atau kehutanan setelah dilakukan restorasi. Reklamasi secara umum adalah kegiatan keseluruhan dari restorasi dan after care.

Keputusan Menteri Pertambangan dan Sumberdaya Mineral No.1453.K/29/MEM/2000 menyatakan bahwa Usaha pertambangan umum baru dapat dilaksanakan apabila telah mendapat Kuasa Pertambangan(KP), Kontrak Karya (KK) dan Perjanjian Karya Pengusahaan Pertambangan Batubara (PKP2B) dari Menteri energi dan Sumberdaya Mineral/Gubernur/Bupati/Walikota sesuai lingkup kewenangan masing-masing.


Dalam rangka perbaikan lingkungan di Kabupaten Banjar upaya reklamasi bekas penambangan batubara juga dilakukan. Namun masih banyak kendala yang ditemui dalam pelaksanaannya. Kendala yang ditemui diantaranya berupa tidak dilaksanakannya reklamasi  oleh Perusahaan Pertambangan Untuk mengantisipasi hal ini dilakukan sistim monitoring dan evaluasi yang dilakukan oleh Dinas pertambangan  dan Energi Propinsi. Monitoring dan evaluasi ini dilaksanakan oleh suatu Tim yang disebut PIT (Petugas Inspeksi Tambang). Satu Tim PIT terdiri dari 3 (tiga) orang untuk satu perusahaan tambang. Monitoring dan evaluasi dilakukan dua kali dalam setahun. Petugas biasanya melakukan monitoring dan evaluasi berdasarkan pada Rencana Kegiatan Tahunan (RKT) yang dibuat perusahaan dan telah disetujui oleh Dinas Pertambangan dan Energi. Dalam setahun RKT wajib dibuat oleh perusahaan dan diserahkan kepada Dinas Pertambangan dan Energi.Selain itu setiap 3 bulan perusahaan juga harus membuat laporan ke Dinas Pertambangan dan Energi berupa peta kemajuan tambang.

Selaku badan yang mengawasi kegiatan yang dapat berdampak pada daerah, BAPEDALDA Kabupaten Banjar juga turut melakukan monitoring dan evaluasi dalam kegiatan reklamasi penambangan batubara. Monitoring dan evaluasi dari badan ini lebih mengacu pada masalah AMDAL (Analisa Manfaat Dampak Lingkungan). Hasil monitoring dan evaluasi ini diserahkan kepada Dinas Pertambangan dan Energi Kabupaten Banjar.

Adapun peraturan yang telah dibuat untuk mengatur pelaksanaan reklamasi bekas penambangan ini diantaranya Undang-Undang mengenai Kehutanan No. 41 tahun 1999 dinyatakan bahwa kegiatan penambangan terbuka dilarang pada kawasan hutan lindung (pasal 38 ayat 4). Ketentuan mengenai pelaksanaan reklamasi hutan disebutkan pada pasal 45 ayat (2) dimana pihak pemegang ijin pinjampakai kawasan hutan untuk pertambangan wajib melaksanakan reklamasi hutan. Sedangkan ayat (3) menyatakan bahwa pihak yang menggunakan kawasan hutan di luar kegiatan kehutanan wajib membayar dana jaminan reklamasi hutan. Dana jaminan reklamasi ini dibayar (melalui rekening ke Bank Indonesia) seiring dengan pelaksanaan eksploitasi batubara (untuk KP dan PKP2B). Dana tersebut dapat dicairkan kembali apabila Perusahaan pertambangan telah melaporkan kegiatan reklamasi yang telah mereka lakukan (sesuai RKT). Tentu saja setelah laporan tersebut disetujui baik oleh Dinas pertambangan dan energi daerah maupun pusat.

Ada juga Keputusan Mentamben No. 1211.K/008/M.PE/1995 tentang Pencegahan dan penaggulangan Kerusakan dan Pencemaran Lingkungan pada Kegiatan usaha pertambangan Umum. Sedangkan Pedoman Teknis Penyelenggaraan Tugas Pemerintah di Bidang pertambangan Umum tertuang dalam Keputusan Mentamben No. 1453.K/29/MEM/2000. Dari bidang kehutanan ada peraturan yang mengatur penambangan didalam kawasan hutan yaitu dengan surat dari Menteri Kehutanan No. S.589/Menhut-VII/KP/2004 tentang Pemberian Ijin Kuasa pertambangan didalam Kawasan Hutan. Dalam keputusan tersebut dinyatakan bahwa apabila ada kegiatan V dalam kawasan hutan tanpa ijin Menteri Kehutanan sesuai pasal 78 ayat (6) UU No. 41 Tahun 1999 tentang Kehutanan diancam dengan pidana penjara 10 (sepuluh) tahun dan denda 5 (lima) milyar rupiah.

Di Kabupaten Banjar pengaturan pertambangan dan reklamasi telah diatur dalam Peraturan Daerah No. 8 tahun 2001

Lebih jauh lagi, maka apabila perusahaan pemegang Kuasa pertambangan lalai atau atau tidak melaksanakan kegiatan reklamasi dapat diberikan semacam teguran. Apabila surat teguran tidak dilaksanakan maka dapat dilakukan Pencabutan Ijin Usaha.

Usaha perbaikan atau pemulihan akibat penambangan khususnya batubara, sebenarnya telah dilakukan sejak sebuah badan usaha berkeinginan untuk melakukan penambangan. Untuk Kabupaten Banjar untuk mendapatkan ijin penambangan suatu badan usaha harus mengajukan Permohonan Kuasa pertambangan KP. Eksploitasi. Surat permohonan tersebut harus dilampiri (1) Peta Wilayah (2) Laporan Lengkap Eksplorasi (3) Laporan Studi Kelayakan (4) Dokumen AMDAL atau UKL-UPL (5) Tanda Bukti Pembayaran Iuran tetap serta melampiri juga Akte Pendirian Perusahaan yang mencantumkan kegiatan pertambangan. Sebelum mengajukan permohonan KP eksplotasi perusahaan juga harus mengajukan permohonan Kuasa pertambangan KP. Ekslorasi yang disertai (1) Peta Wilayah dengan mencantumkan koordinat lokasi yang dimohon (2) Akte Pendirian Perusahaan (3) Tanda bukti penyetoran uang jaminan kesungguhan (4) Laporan Keuangan (5) Nomor Pokok Wajib Pajak (6) Fotokopy Kartu Tanda Penduduk dan pas photo. Dengan persyaratan seperti disebut di atas terutama untuk KP Eksploitasi, terlihat sudah ada usaha perlindungan alam dari dampak eksploitasi/penambangan yaitu dengan mencantumkan dokumen AMDAL.

Telah banyak dipublikasikan di media masa maupun hasil kajian, bahwa dampak daripada penambangan terutama batubara sangat merugikan kelestarian lingkungan. Kerusakan lingkungan itu merupakan akibat dari kegiatan eksploitasi yang tidak tertib melaksanakan tahapan-tahapan kegiatan penambangan yang telah ditentukan. Pengelola tambang yang tertib melakukan pemulihan terhadap arael tambangnya tentu dapat meminimalkan dampak negatif. Dari ulasan diatas mungkin dapat memberikan gambaran tentang bagaimana reklamasi bekas pertambangan batubara, terutama di Kabupaten Banjar. Harapan lebih jauh lagi ulasan tadi dapat membuka wawasan kita agar dapat mengurangi dampak negatif terhadap lingkungan akibat penambangan batubara terutama dengan reklamasi.

Senin, 18 Mei 2009

Reklamasi Tambang Tak Hanya Tanam Pohon


IST
Reklamasi Adaro
Kamis, 29 Januari 2009 | 23:18 WITA


SESUAI dengan Undang-undang tentang Kehutanan No. 41 tahun 1999 Pasal 45 ayat 2 menyebutkan bahwa, reklamasi pada kawasan hutan bekas areal tambang, wajib dilaksanakan oleh pemegang izin pertambangan sesuai dengan tahapan kegiatan pertambangan. 

Dalam Keputusan Menteri Kehutanan dan Perkebunan No. 146/Kpts-II/1999 pasal 5 menyebutkan, ruang lingkup reklamasi meliputi; Inventarisasi lokasi reklamasi, Penetapan lokasi reklamasi, Perencanaan reklamasi (penyusunan reklamasi, penyusunan rencana reklamasi), Pelaksanaan reklamasi (Penyiapan lahan, Pengaturan bentuk lahan, Pengendalian erosi dan sendimentasi, Pengelolaan lapisan olah, Revegetasi dan Pemeliharaan. 

Memang pada kenyataannya tanah yang telah dieksplorasi tidak bisa kembali seperti semula, misalnya permukaan tanah yang tadinya berbentuk perbukitan tidak bisa kembali menjadi bukit dengan tinggi yang sama seperti semula. Namun, untuk menjadikannya wilayah hijau dengan dengan hamparan berbagai tanaman adalah perkara mudah.

PT Adaro Indonesia, perusahaan tambang terbesar kedua di Indonesia ini punya cara tersendiri dalam mengatur daerah reklamasinya, hal pertama yang dilakukan setelah menutup lubang bekas tambang dengan sistem terasering, lahan tersebut dipasangakan alat untuk mencegah longsor lalu, disemprotkan cairan penyubur dan penyebaran tanah lapisan atas (top soil) serta bibit tanaman. 

Proses pembibitan selesai dilanjutkan dengan proses perawatan yaitu pemberian pupuk kandang dan penyemprotan bio urine yang berasal dari kotoran sapi yang diolah oleh peternakan sapi milik PT Adaro Indonesia. Proses reklamasi yang dilakukan oleh PT Adaro Indonesia sudah berlangsung sejak tambang tersebut mulai dieksplorasi, malahan belum lama ini PT Adaro Indonesia mencoba membuat lahan reklamasi sebagai lahan produktif.

Lahan produktif yang dimaksud adalah dengan penanaman bibit kelapa sawit di daerah reklamasi. Penanaman bibit kelapa sawit ini dilakukan agar masyarakat bisa menikmati hasilnya apabila PT Adaro Indonesia sudah tidak beroperasi disini, bibit kelapa sawit ini bisa dipetik hasilnya apabila usianya telah mencapai 7 tahun. (*)